142 research outputs found

    Serologic Evidence of Widespread Everglades Virus Activity in Dogs, Florida

    Get PDF
    Everglades virus (EVEV), an alphavirus in the Venezuelan equine encephalitis complex, circulates among rodents and vector mosquitoes in Florida and occasionally infects humans. It causes febrile disease, sometimes accompanied by neurologic manifestations. Although previous surveys showed high seroprevalence in humans, EVEV infections may be underdiagnosed because the disease is not severe enough to warrant a clinic visit or the undifferentiated presentations complicate diagnosis. Documented EVEV activity, as recent as 1993, was limited to south Florida. Using dogs as sentinels, a serosurvey was conducted to evaluate whether EVEV circulated recently in Florida and whether EVEV's spatial distribution parallels that of the mosquito vector, Culex cedecei. Four percent of dog sera contained neutralizing EVEV antibodies, and many seropositive animals lived farther north than both recorded EVEV activity and the principal vector. These results indicate that EVEV is widespread in Florida and may be an important, unrecognized cause of human illness

    Aedes aegypti Saliva Alters Leukocyte Recruitment and Cytokine Signaling by Antigen-Presenting Cells during West Nile Virus Infection

    Get PDF
    West Nile virus (WNV) is transmitted during mosquito bloodfeeding. Consequently, the first vertebrate cells to contact WNV are cells in the skin, followed by those in the draining lymph node. Macrophages and dendritic cells are critical early responders in host defense against WNV infection, not just because of their role in orchestrating the immune response, but also because of their importance as sites of early peripheral viral replication. Antigen-presenting cell (APC) signals have a profound effect on host antiviral responses and disease severity. During transmission, WNV is intimately associated with mosquito saliva. Due to the ability of mosquito saliva to affect inflammation and immune responses, and the importance of understanding early events in WNV infection, we investigated whether mosquito saliva alters APC signaling during arbovirus infection, and if alterations in cell recruitment occur when WNV infection is initiated with mosquito saliva. Accordingly, experiments were performed with cultured dendritic cells and macrophages, flow cytometry was used to characterize infiltrating cell types in the skin and lymph nodes during early infection, and real-time RT-PCR was employed to evaluate virus and cytokine levels. Our in vitro results suggest that mosquito saliva significantly decreases the expression of interferon-β and inducible nitric oxide synthase in macrophages (by as much as 50 and 70%, respectively), whilst transiently enhancing interleukin-10 (IL-10) expression. In vivo results indicate that the predominate effect of mosquito feeding is to significantly reduce the recruitment of T cells, leading the inoculation site of mice exposed to WNV alone to have up to 2.8 fold more t cells as mice infected in the presence of mosquito saliva. These shifts in cell population are associated with significantly elevated IL-10 and WNV (up to 4.0 and 10 fold, respectively) in the skin and draining lymph nodes. These results suggest that mosquito saliva dysregulates APC antiviral signaling, and reveal a possible mechanism for the observed enhancement of WNV disease mediated by mosquito saliva via a reduction of T lymphocyte and antiviral activity at the inoculation site, an elevated abundance of susceptible cell types, and a concomitant increase in immunoregulatory activity of IL-10

    Vector competence of Aedes aegypti, Culex tarsalis, and Culex quinquefasciatus from California for Zika virus.

    Get PDF
    Zika virus (ZIKV) has emerged since 2013 as a significant global human health threat following outbreaks in the Pacific Islands and rapid spread throughout South and Central America. Severe congenital and neurological sequelae have been linked to ZIKV infections. Assessing the ability of common mosquito species to transmit ZIKV and characterizing variation in mosquito transmission of different ZIKV strains is important for estimating regional outbreak potential and for prioritizing local mosquito control strategies for Aedes and Culex species. In this study, we evaluated the laboratory vector competence of Aedes aegypti, Culex quinquefasciatus, and Culex tarsalis that originated in areas of California where ZIKV cases in travelers since 2015 were frequent. We compared infection, dissemination, and transmission rates by measuring ZIKV RNA levels in cohorts of mosquitoes that ingested blood meals from type I interferon-deficient mice infected with either a Puerto Rican ZIKV strain from 2015 (PR15), a Brazilian ZIKV strain from 2015 (BR15), or an ancestral Asian-lineage Malaysian ZIKV strain from 1966 (MA66). With PR15, Cx. quinquefasciatus was refractory to infection (0%, N = 42) and Cx. tarsalis was infected at 4% (N = 46). No ZIKV RNA was detected in saliva from either Culex species 14 or 21 days post feeding (dpf). In contrast, Ae. aegypti developed infection rates of 85% (PR15; N = 46), 90% (BR15; N = 20), and 81% (MA66; N = 85) 14 or 15 dpf. Although MA66-infected Ae. aegypti showed higher levels of ZIKV RNA in mosquito bodies and legs, transmission rates were not significantly different across virus strains (P = 0.13, Fisher's exact test). To confirm infectivity and measure the transmitted ZIKV dose, we enumerated infectious ZIKV in Ae. aegypti saliva using Vero cell plaque assays. The expectorated plaque forming units PFU varied by viral strain: MA66-infected expectorated 13±4 PFU (mean±SE, N = 13) compared to 29±6 PFU for PR15-infected (N = 13) and 35±8 PFU for BR15-infected (N = 6; ANOVA, df = 2, F = 3.8, P = 0.035). These laboratory vector competence results support an emerging consensus that Cx. tarsalis and Cx. quinquefasciatus are not vectors of ZIKV. These results also indicate that Ae. aegypti from California are efficient laboratory vectors of ancestral and contemporary Asian lineage ZIKV

    Identification of hotspots in the European Union for the introduction of four zoonotic arboviroses by live animal trade

    Get PDF
    Live animal trade is considered a major mode of introduction of viruses from enzootic foci into disease-free areas. Due to societal and behavioural changes, some wild animal species may nowadays be considered as pet species. The species diversity of animals involved in international trade is thus increasing. This could benefit pathogens that have a broad host range such as arboviruses. The objective of this study was to analyze the risk posed by live animal imports for the introduction, in the European Union (EU), of four arboviruses that affect human and horses: Eastern and Western equine encephalomyelitis, Venezuelan equine encephalitis and Japanese encephalitis. Importation data for a five-years period (2005-2009, extracted from the EU TRACES database), environmental data (used as a proxy for the presence of vectors) and horses and human population density data (impacting the occurrence of clinical cases) were combined to derive spatially explicit risk indicators for virus introduction and for the potential consequences of such introductions. Results showed the existence of hotspots where the introduction risk was the highest in Belgium, in the Netherlands and in the north of Italy. This risk was higher for Eastern equine encephalomyelitis (EEE) than for the three other diseases. It was mainly attributed to exotic pet species such as rodents, reptiles or cage birds, imported in small-sized containments from a wide variety of geographic origins. The increasing species and origin diversity of these animals may have in the future a strong impact on the risk of introduction of arboviruses in the EU. (Résumé d'auteur

    Venezuelan Equine Encephalitis Virus Transmission and Effect on Pathogenesis

    Get PDF
    Quantifying the dose of an arbovirus transmitted by mosquitoes is essential for designing pathogenesis studies simulating natural infection of vertebrates. Titration of saliva collected in vitro from infected mosquitoes may not accurately estimate titers transmitted during blood feeding, and infection by needle injection may affect vertebrate pathogenesis. We compared the amount of Venezuelan equine encephalitis virus collected from the saliva of Aedes taeniorhynchus to the amount injected into a mouse during blood feeding. Less virus was transmitted by mosquitoes in vivo (geometric mean 11 PFU) than was found for comparable times of salivation in vitro (mean saliva titer 74 PFU). We also observed slightly lower early and late viremia titers in mice that were needle injected with 8 PFU, which represents the low end of the in vivo transmission range. No differences in survival were detected, regardless of the dose or infection route

    Experimental Everglades Virus Infection of Cotton Rats (Sigmodon hispidus)

    Get PDF
    We characterized Everglades virus infection of cotton rats from South Florida to validate their role as reservoir hosts in the enzootic transmission cycle

    Isolation of Fidelity Variants of RNA Viruses and Characterization of Virus Mutation Frequency

    Get PDF
    RNA viruses use RNA dependent RNA polymerases to replicate their genomes. The intrinsically high error rate of these enzymes is a large contributor to the generation of extreme population diversity that facilitates virus adaptation and evolution. Increasing evidence shows that the intrinsic error rates, and the resulting mutation frequencies, of RNA viruses can be modulated by subtle amino acid changes to the viral polymerase. Although biochemical assays exist for some viral RNA polymerases that permit quantitative measure of incorporation fidelity, here we describe a simple method of measuring mutation frequencies of RNA viruses that has proven to be as accurate as biochemical approaches in identifying fidelity altering mutations. The approach uses conventional virological and sequencing techniques that can be performed in most biology laboratories. Based on our experience with a number of different viruses, we have identified the key steps that must be optimized to increase the likelihood of isolating fidelity variants and generating data of statistical significance. The isolation and characterization of fidelity altering mutations can provide new insights into polymerase structure and function1-3. Furthermore, these fidelity variants can be useful tools in characterizing mechanisms of virus adaptation and evolution4-7

    New Vaccine Design Based on Defective Genomes That Combines Features of Attenuated and Inactivated Vaccines

    Get PDF
    [Background] New vaccine designs are needed to control diseases associated with antigenically variable RNA viruses. Foot-and-mouth disease (FMD) is a highly contagious disease of livestock that inflicts severe economic losses. Although the current whole-virus chemically inactivated vaccine has proven effective, it has led to new outbreaks of FMD because of incomplete inactivation of the virus or the escape of infectious virus from vaccine production premises. We have previously shown that serial passages of FMD virus (FMDV) C-S8c1 at high multiplicity of infection in cell culture resulted in virus populations consisting of defective genomes that are infectious by complementation (termed C-S8p260).[Principal Finding] Here we evaluate the immunogenicity of C-S8p260, first in a mouse model system to establish a proof of principle, and second, in swine, the natural host of FMDV C-S8c1. Mice were completely protected against a lethal challenge with FMDV C-S8c1, after vaccination with a single dose of C-S8p260. Pigs immunized with different C-S8p260 doses and challenged with FMDV C-S8c1 either did not develop any clinical signs or showed delayed and mild disease symptoms. C-S8p260 induced high titers of both FMDV-specific, neutralizing antibodies and activated FMDV-specific T cells in swine, that correlated with solid protection against FMDV.[Conclusions] The defective virus-based vaccine did not produce detectable levels of transmissible FMDV. Therefore, a segmented, replication-competent form of a virus, such as FMDV C-S8p260, can provide the basis of a new generation of attenuated antiviral vaccines with two safety barriers. The design can be extended to any viral pathogen that encodes trans-acting gene products, allowing complementation between replication-competent, defective forms.This research was supported by grants AGL2004-0049, AGL2007-61374, CSD2006-07 and BFU2008-02816/BMC from Ministerio de Ciencia e Innovación, Spain, and European Union, Network of Excellence, EPIZONE (Contract # FOOD-CT-2006-016236). CIBERehd (Centro de Investigacio´n Biome´dica en Red de Enfermedades Hepa´ticas y Digestivas) is funded by Instituto de Salud Carlos III. Work at Centro de Biologı´a Molecular ‘‘Severo Ochoa’’ (CISC-UAM) was supported by an institutional grant from Fundacio´n Ramo´n Areces. T.R-C. was supported by a contract from Comunidad Auto´noma de Madrid; S.O. and M.S-R were supported by a predoctoral fellowship from the Ministerio de Educacio´n y Ciencia. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewe
    corecore